Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Sci ; 367(4): 259-267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278359

RESUMO

BACKGROUND: Massive gastrointestinal bleeding is a life-threatening condition without a well-established definition. We aimed to analyze the characteristics, risk factors, and outcomes of patients with massive upper gastrointestinal bleeding. METHODS: Our study analyzed a prospective registry of patients admitted between 2013 and 2020 with variceal and non-variceal causes. Severe bleeding was defined as ongoing bleeding requiring transfusion of more than 2 units of packed red blood cells within 24 hours, accompanied by signs of shock. The main outcomes were 30-day and 6-month mortality, rebleeding within 7 days, persistent bleeding, and severe complications during admission. RESULTS: Out of 1213 patients, 171 had massive gastrointestinal bleeding, with a predominance of males. The massive bleeding group had higher rates of chronic kidney disease, cirrhosis, in-patient status, disseminated malignancy, alcoholism, and ASA score ≥3. All major outcomes, including 30-day mortality, 6-month mortality, rebleeding, persistent bleeding, and severe complications, were more common in the massive bleeding group. Multivariate logistic regression identified inpatient status, systemic diseases, malignancy, active bleeding in endoscopy, and severe complications as risk factors for massive bleeding and mortality. CONCLUSIONS: Inpatient status and comorbidities, especially systemic diseases, and malignancies, were associated with a higher risk of massive bleeding. Mortality was linked to chronic kidney disease, cirrhosis, severe comorbidities, and alcohol consumption. We observed increased 6-months mortality, probably related to a health status in which gastrointestinal bleeding heralded poor outcomes, some of them potentially preventable. Innovative healthcare interventions, such as Emergency Department-based intermediate care areas or Intensive Care Units, and multidisciplinary follow-up, could potentially improve survival.


Assuntos
Varizes Esofágicas e Gástricas , Neoplasias , Insuficiência Renal Crônica , Masculino , Humanos , Feminino , Hemorragia Gastrointestinal/epidemiologia , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/diagnóstico , Fatores de Risco , Cirrose Hepática/complicações , Endoscopia Gastrointestinal , Insuficiência Renal Crônica/complicações
2.
Healthcare (Basel) ; 12(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38255082

RESUMO

(1) Background: Colorectal cancer (CRC) is one of the most common causes of cancer. Timely diagnosis is critical, with even minor delays impacting prognosis. Primary care providers face obstacles in accessing specialist care. This study investigates the impact of implementing an electronic consultation (eConsult) system combined with a specific prioritization system on CRC diagnosis delay and tumor staging. (2) Methods: The study analyzes 245 CRC patients from November 2019 to February 2022, comparing those referred before and after the eConsult system's implementation during the COVID-19 pandemic. Data on referral reasons, pathways, diagnosis delays, and staging were collected. Multivariate analysis aimed to identify independent risk factors for advanced staging at diagnosis. (3) Results: The eConsult system significantly reduced CRC diagnosis delay from 68 to 26 days. The majority of patients referred via eConsult presented with symptoms. Despite expedited diagnoses, no discernible difference in CRC staging emerged between eConsult and traditional referrals. Notably, patients from screening programs or with a positive fecal immunochemical test (FIT) experienced earlier-stage diagnoses. A positive FIT without symptoms and being a never-smoker emerged as protective factors against advanced-stage CRC. (4) Conclusions: This study highlights eConsult's role in reducing CRC diagnosis delay, improving diagnostic efficiency and prioritizing urgent cases, emphasizing FIT effectiveness.

3.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005491

RESUMO

The field of flexible electronics is undergoing an exponential evolution due to the demand of the industry for wearable devices, wireless communication devices and networks, healthcare sensing devices and the technology around the Internet of Things (IoT) framework. E-tex tiles are attracting attention from within the healthcare areas, amongst others, for providing the possibility of developing continuous patient monitoring solutions and customized devices to accommodate each patient's specific needs. This review paper summarizes multiple approaches investigated in the literature for wearable/flexible resonators working as antenna-based systems, sensors and filters with special attention paid to the integration to flexible materials, especially textiles. This review manuscript provides a general overview of the flexible resonators' advantages and drawbacks, materials, fabrication techniques and processes and applications. Finally, the main challenges and future prospects of wearable resonators are discussed.


Assuntos
Micro-Ondas , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica/métodos , Monitorização Fisiológica/métodos , Têxteis
4.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687977

RESUMO

This paper provides an overview of flexible and wearable respiration sensors with emphasis on their significance in healthcare applications. The paper classifies these sensors based on their operating frequency distinguishing between high-frequency sensors, which operate above 10 MHz, and low-frequency sensors, which operate below this level. The operating principles of breathing sensors as well as the materials and fabrication techniques employed in their design are addressed. The existing research highlights the need for robust and flexible materials to enable the development of reliable and comfortable sensors. Finally, the paper presents potential research directions and proposes research challenges in the field of flexible and wearable respiration sensors. By identifying emerging trends and gaps in knowledge, this review can encourage further advancements and innovation in the rapidly evolving domain of flexible and wearable sensors.


Assuntos
Conhecimento , Dispositivos Eletrônicos Vestíveis , Respiração
5.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765890

RESUMO

This study showcases the creation of an innovative textile antenna sensor that utilizes a resonant cavity for the purpose of liquid characterization. The cavity is based on circular substrate integrated waveguide (SIW) technology. A hole is created in the middle of the structure where a pipe is used to inject the liquid under test. The pipe is covered by a metal sheath to enhance the electromagnetic field's penetration of the tube, thus increasing the device's sensitivity. The resonance frequency of the proposed system is altered when the liquid under test is inserted into the sensitive area of the structure. The sensing of the liquid is achieved by the measurement of its dielectric properties via the perturbation of the electric fields in the SIW configuration. The S11 measurement enables the extraction of the electromagnetic properties of the liquid injected into the pipe. Specifically, the dielectric constant of the liquid is determined by observing the resonance frequency shift relative to that of an air-filled pipe. The loss tangent of the liquid is extracted by comparing the variation in the quality factor with that of an air-filled pipe after eliminating the inherent losses of the structure. The proposed SIW antenna sensor demonstrates a high sensitivity of 0.7 GHz/Δεr corresponding to a dielectric constant range from 4 to 72. To the best of our knowledge, this article presents for the first time the ability of a fully textile SIW cavity antenna-based sensor to characterize the dielectric properties of a liquid under test and emphasizes its differentiating features compared to PCB-based designs. The unique attributes of the textile-based antenna stem from its flexibility, conformability, and compatibility with various liquids.

6.
Materials (Basel) ; 16(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445152

RESUMO

In this paper, a smart office chair with movable textile sensors to monitor sitting position during the workday is presented. The system consists of a presence textile capacitive sensor with different levels of activation with a signal conditioning device. The proposed system was integrated into an office chair to detect postures that could provoke musculoskeletal disorders or discomfort. The microcontroller measured the capacitance by means of a cycle count method and provided the position information in real time. The information could be analysed to set up warnings to prevent incorrect postures or the necessity to move. Five participants assumed a series of postures, and the results showed the workability of the proposed smart chair. The chair can be provided as a new tool for companies, hospitals, or other institutions to detect incorrect postures and monitor the postures of people with reduced mobility. This tool can optimise control procedures or prevent occupational risks.

7.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433264

RESUMO

Wearable technology has been getting more attention for monitoring vital signs in various medical fields, particularly in breathing monitoring. To monitor respiratory patterns, there is a current set of challenges related to the lack of user comfort, reliability, and rigidity of the systems, as well as challenges related to processing data. Therefore, the need to develop user-friendly and reliable wireless approaches to address these problems is required. In this paper, a novel, full, compact textile breathing sensor is investigated. Specifically, an embroidered meander dipole antenna sensor integrated into an e-textile T-shirt with a Bluetooth transmitter for real-time breathing monitoring was developed and tested. The proposed antenna-based sensor is designed to transmit data over wireless communication networks at 2.4 GHz and is made of a silver-coated nylon thread. The sensing mechanism of the proposed system is based on the detection of a received signal strength indicator (RSSI) transmitted wirelessly by the antenna-based sensor, which is found to be sensitive to stretch. The respiratory system is placed on the middle of the human chest; the area of the proposed system is 4.5 × 0.48 cm2, with 2.36 × 3.17 cm2 covered by the transmitter module. The respiratory signal is extracted from the variation of the RSSI signal emitted at 2.4 GHz from the detuned embroidered antenna-based sensor embedded into a commercial T-shirt and detected using a laptop. The experimental results demonstrated that breathing signals can be acquired wirelessly by the RSSI via Bluetooth. The RSSI range change was from -80 dBm to -72 dBm, -88 dBm to -79 dBm and -85 dBm to -80 dBm during inspiration and expiration for normal breathing, speaking and movement, respectively. We tested the feasibility assessment for breathing monitoring and we demonstrated experimentally that the standard wireless networks, which measure the RSSI signal via standard Bluetooth protocol, can be used to detect human respiratory status and patterns in real time.


Assuntos
Respiração , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Taxa Respiratória , Monitorização Fisiológica
8.
Materials (Basel) ; 13(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867144

RESUMO

This review paper summarizes various approaches developed in the literature for antenna sensors with an emphasis on flexible solutions. The survey helps to recognize the limitations and advantages of this technology. Furthermore, it offers an overview of the main points for the development and design of flexible antenna sensors from the selection of the materials to the framing of the antenna including the different scenario applications. With regard to wearable antenna sensors deployment, a review of the textile materials that have been employed is also presented. Several examples related to human body applications of flexible antenna sensors such as the detection of NaCl and sugar solutions, blood and bodily variables such as temperature, strain, and finger postures are also presented. Future investigation directions and research challenges are proposed.

9.
Materials (Basel) ; 13(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722072

RESUMO

Textile radio-frequency identification operating in ultra-high frequency (UHF-RFID) sensors based on different scenarios are becoming attractive with the forthcoming internet of things (IoT) era and aging society. Compared with conventional UHF-RFID sensors, textile UHF-RFID sensors offer the common textile features, light weight, washability and comfort. Due to the short time and low level of development, researches on the integration of textile UHF-RFID techniques and textile sensing techniques are not flourishing. This paper is motivated by this situation to identify the current research status. In this paper, we provide a systematic review of the fundamentals of textile UHF-RFID sensors techniques, materials, the brief history and the state-of-the-art of the scenario-based development through detailed summary and analysis on the achievements from the starting year of 2004 to the present time. Moreover, according to the analysis, we give a proposal of the future prospects in several aspects, including the new materials and manufacturing processes, machine learning technology, scenario-based applications and unavoidable reliability.

10.
Sensors (Basel) ; 19(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818763

RESUMO

In this work, two embroidered textile moisture sensors are characterized with three different conductive yarns. The sensors are based on a capacitive interdigitated structure embroidered on a cotton substrate with an embroidered conductor yarn. The performance comparison of three different type of conductive yarns has been addressed. In order to evaluate the sensor sensitivity, the impedance of the sensor has been measured by means of an LCR meter from 20 Hz to 20 kHz on a climatic chamber with a sweep of the relative humidity from 30% to 65% at 20 °C. The experimental results show a clear and controllable dependence of the sensor impedance with the relative humidity and the chosen conductor yarns. This dependence points out the optimum conductive yarn to be used to develop wearable applications for moisture measurement.

11.
Sensors (Basel) ; 18(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413019

RESUMO

In this work, an embroidered textile moisture sensor is presented. The sensor is based on a capacitive interdigitated structure embroidered on a cotton substrate with an embroidery conductor yarn composed of 99% pure silver plated nylon yarn 140/17 dtex. In order to evaluate the sensor sensitivity, the impedance of the sensor has been measured by means of a impedance meter (LCR) from 20 Hz to 20 kHz in a climatic chamber with a sweep of the relative humidity from 25% to 65% at 20 °C. The experimental results show a clear and controllable dependence of the sensor impedance with the relative humidity. Moreover, the reproducibility of the sensor performance subject to the manufacturing process variability and washing process is also evaluated. The results show that the manufacturing variability introduces a moisture measurement error up to 4%. The washing process impact on the sensor behavior after applying the first washing cycle implies a sensitivity reduction higher than 14%. Despite these effects, the textile sensor keeps its functionality and can be reused in standard conditions. Therefore, these properties point out the usefulness of the proposed sensor to develop wearable applications within the health and fitness scope including when the user needs to have a life cycle longer than one-time use.

12.
PLoS One ; 13(6): e0197957, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879146

RESUMO

BACKGROUND: Bioelectrical impedance vector analysis (BIVA) is a general concept that includes all methodologies used in the analysis of the bioelectrical vector, whereas the "classic" BIVA is a patented methodology included among these methods of analysis. Once this was clarified, the systematic review of the literature provides a deeper insight into the scope and range of application of BIVA in sport and exercise. OBJECTIVE: The main goal of this work was to systematically review the sources on the applications of BIVA in sport and exercise and to examine its usefulness and suitability as a technique for the evaluation of body composition, hydration status, and other physiological and clinical relevant characteristics, ultimately to trace future perspectives in this growing area, including a proposal for a research agenda. METHODS: Systematic literature searches in PubMed, SPORTDiscus and Scopus databases up to July, 2017 were conducted on any empirical investigations using phase-sensitive bioimpedance instruments to perform BIVA within exercise and sport contexts. The search included healthy sedentary individuals, physically active subjects and athletes. RESULT: Nineteen eligible papers were included and classified as sixteen original articles and three scientific conference communications. Three studies analysed short-term variations in the hydration status evoked by exercise/training through whole-body measurements, eleven assessed whole-body body composition changes induced by long-term exercise, four compared athletic groups or populations using the whole-body assessment, and two analysed bioelectrical patterns of athletic injuries or muscle damage through localised bioimpedance measurements. CONCLUSIONS: BIVA is a relatively new technique that has potential in sport and exercise, especially for the assessment of soft-tissue injury. On the other hand, the current tolerance ellipses of "classic" BIVA are not a valid method to identify dehydration in individual athletes and a new approach is needed. "Specific" BIVA, a method which proposes a correction of bioelectrical values for body geometry, emerges as the key to overcome "classic" BIVA limitations regarding the body composition assessment. Further research establishing standardised testing procedures and investigating the relationship between physiology and the bioelectrical signal in sport and exercise is needed.


Assuntos
Impedância Elétrica , Exercício Físico , Esportes , Humanos
13.
Materials (Basel) ; 11(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874849

RESUMO

In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

14.
Sensors (Basel) ; 17(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335424

RESUMO

This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...